A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation

نویسندگان

  • Thang D. Bui
  • Josiah Yan
  • Richard E. Turner
چکیده

Gaussian processes (GPs) are flexible distributions over functions that enable highlevel assumptions about unknown functions to be encoded in a parsimonious, flexible and general way. Although elegant, the application of GPs is limited by computational and analytical intractabilities that arise when data are sufficiently numerous or when employing non-Gaussian models. Consequently, a wealth of GP approximation schemes have been developed over the last 15 years to address these key limitations. Many of these schemes employ a small set of pseudo data points to summarise the actual data. In this paper we develop a new pseudo-point approximation framework using Power Expectation Propagation (Power EP) that unifies a large number of these pseudo-point approximations. Unlike much of the previous venerable work in this area, the new framework is built on standard methods for approximate inference (variational free-energy, EP and Power EP methods) rather than employing approximations to the probabilistic generative model itself. In this way all of the approximation is performed at ‘inference time’ rather than at ‘modelling time’, resolving awkward philosophical and empirical questions that trouble previous approaches. Crucially, we demonstrate that the new framework includes new pseudo-point approximation methods that outperform current approaches on regression and classification tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximations for Binary Gaussian Process Classification

We provide a comprehensive overview of many recent algorithms for approximate inference in Gaussian process models for probabilistic binary classification. The relationships between several approaches are elucidated theoretically, and the properties of the different algorithms are corroborated by experimental results. We examine both 1) the quality of the predictive distributions and 2) the sui...

متن کامل

Expectation Propagation in Gaussian Process Dynamical Systems

Rich and complex time-series data, such as those generated from engineering systems, financial markets, videos, or neural recordings are now a common feature of modern data analysis. Explaining the phenomena underlying these diverse data sets requires flexible and accurate models. In this paper, we promote Gaussian process dynamical systems as a rich model class that is appropriate for such an ...

متن کامل

Streaming Sparse Gaussian Process Approximations

Sparse pseudo-point approximations for Gaussian process (GP) models provide a suite of methods that support deployment of GPs in the large data regime and enable analytic intractabilities to be sidestepped. However, the field lacks a principled method to handle streaming data in which both the posterior distribution over function values and the hyperparameter estimates are updated in an online ...

متن کامل

Sparse-posterior Gaussian Processes for general likelihoods

Gaussian processes (GPs) provide a probabilistic nonparametric representation of functions in regression, classification, and other problems. Unfortunately, exact learning with GPs is intractable for large datasets. A variety of approximate GP methods have been proposed that essentially map the large dataset into a small set of basis points. Among them, two state-of-the-art methods are sparse p...

متن کامل

Sparse-posterior Gaussian Processes for general likelihoods

Gaussian processes (GPs) provide a probabilistic nonparametric representation of functions in regression, classification, and other problems. Unfortunately, exact learning with GPs is intractable for large datasets. A variety of approximate GP methods have been proposed that essentially map the large dataset into a small set of basis points. Among them, two state-of-the-art methods are sparse p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017